

www.beijingmath.com

Statistics and Probability

Computing Probabilities

Before we get into the concept of probabilities, we will look at the following example of a spinner.

What is the probability of the pointer landing on a red area?

The calculation involves a few definitions:

Definition	Example
An experiment is a situation involving chance or probability that leads to results called outcomes.	In the example above, the experiment is spinning the spinner.
An outcome is the result of a single trial of an experiment.	In the example above, the possible outcomes are landing on the red, pink, and white.
An event is the outcome(s) of an experiment.	In the example above, the event is to land on the red.
Probability is the measure of the likelihood of an event.	In the example above, the probability of the pointer landing on red is? See below for explanation.

Probability of an event equals the number of the favorable outcomes divided by the total number of possible outcomes.

- In the example above, there are 9 sections on the compass and that is the total number of possible sections that the pointer could land on.
- We also observe that each section is of equal size. Therefore each section will have an equal chance of being landed on by the pointer.
- There are 2 red sections, so the probability of the pointer landing on a red section is 2 out of 9, or $\frac{2}{9}$.

Another Example:

The shapes pictured below are placed in a bag and one is drawn randomly. What is the probability of drawing a triangle from the bag? Express the probability as a decimal. Round to the nearest hundredth if necessary.

There are 12 figures, therefore the possible outcomes are 12. We also know that there are 4 triangles, and since it is randomly chosen, each figure has an equal chance of being chosen. The probability of picking up a triangle is $\frac{4}{12}$.

Convert that to a decimal is: $\frac{4}{12} = \frac{1}{3} \approx 0.33$

Therefore the probability of drawing a triangle is 0.33.