Triangles

A triangle has three sides and three angles.

- Base: any side of the triangle
- Height: a line segment perpendicular to the base from the opposite vertex

Classification of triangles by their angles:

acute triangle

- An acute triangle has three acute angles (an acute angle measures less than 90°)
- A right triangle has one 90° angle
- An obtuse triangle has an obtuse angle (an obtuse angle has more than 90°)

Classification of triangles by their sides:

scalene triangle isosceles triangle

equilateral triangle

- Equilateral triangle: three equal sides, three equal angles
- Isosceles triangle: two equal sides, two equal angles
- Scalene triangle: no equal sides, no equal angles

Triangle properties:

- Angles on the inside sum up to $\mathbf{1 8 0}^{\circ}$.
- The sum of the lengths of any $\mathbf{2}$ sides of a triangle must be greater than the third side.
- The largest interior angle and the longest side are opposite each other.

Example 1

Can you use side lengths of $5 \mathrm{~cm}, \mathbf{3 c m}$ and 6 cm to form a triangle?

Explanation

The sum of the lengths of any 2 sides of a triangle must be greater than the third side.
$\left\{\begin{array}{l}5+3>6 \\ 5+6>3 \\ 6+3>5\end{array}\right.$

Therefore we can use side lengths of $5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 6 cm to form a triangle.

Example 2

What is the measure of the unknown angle in this triangle?

Explanation

Since angles on the inside sum up to 180°,
The unknown angle $=180^{\circ}-56^{\circ}-44^{\circ}$

$$
\begin{aligned}
& =180^{\circ}-\left(56^{\circ}+44^{\circ}\right) \\
& =180^{\circ}-100^{\circ} \\
& =80^{\circ}
\end{aligned}
$$

Therefore the unknown angle is 80°.

Example 3

An isosceles triangle has a vertex angle of $12 \mathbf{0}^{\circ}$. What is the measure of the base angle?

- Explanation

Since an isosceles triangle has two equal angles and all angles sum up to 180°.
The sum of two base angles is $180^{\circ}-120^{\circ}=60^{\circ}$.

Therefore the base angle of the triangle is $60^{\circ} \div \mathbf{2}=\mathbf{3 0 ^ { \circ }}$.

