Estimating and Rounding

To round a decimal:

1. Locate the digit in the place value being rounded and circle it.
2. Reference the digit to the right.

- If it is less than 5 , keep the circled digit and discard all the digits to the right.
- If it is greater than 5 , increase the circled digit by 1 and discard all the digits to the right.

Example 1

Round 36.52 to the nearest tenth.

Explanation

Step 1: Locate the digit being rounded and circle it.
36.(5)2

Step 2: Reference the digit to the right.
36.5)2

Step 3: Since 2 is less than 5, keep the circled digit and discard all the digits to the right.

Result: $\mathbf{3 6 . 5}$

Example 2

Round 45.48 to the nearest tenth.

Explanation

Step 1: Locate the digit being rounded and circle it.
45.(4)8

Step 2: Reference the digit to the right.
45.(4)8

Step 3: Since 8 is greater than 5, increase the circled digit by 1 and discard all the digits to the right.

Result: 45.5

Example 3

Step 1: Locate the digit being rounded and circle it.
18.496

Step 2: Reference the digit to the right.
18.496

Step 3: Since 6 is greater than 5, increase the circled digit by 1 and discard all the digits to the right. Since $9+1=10$, we need to carry 1 to the tenth place.

Result: 18.50 (Note: Do not remove the zero here since it is a place holder for hundredths.)

Example 4

(1) Round each decimal to the nearest thousandth and then calculate. 8.5123-3.2568 \approx
(2) Calculate and round the result to the nearest thousandth: 8.5123-3.2568 \approx
(3) Are the results from step 1 and 2 the same?

- Explanation
(1) Round each decimal to the nearest thousandth.
$8.5123 \approx 8.512$
$3.2568 \approx 3.257$
Calculate: 8.512 - $3.257=5.255$
(2) Calculate: $8.5123-3.2568=5.2555$

Round the result to the nearest thousandth. $5.2555 \approx 5.256$

From this example, we know that the result could be different when we round and calculate OR calculate first and round later.
(3) Since $5.255 \neq 5.256$, they are not the same.

